Authors:
(1) Hoon Kim, Beeble AI, and contributed equally to this work;
(2) Minje Jang, Beeble AI, and contributed equally to this work;
(3) Wonjun Yoon, Beeble AI, and contributed equally to this work;
(4) Jisoo Lee, Beeble AI, and contributed equally to this work;
(5) Donghyun Na, Beeble AI, and contributed equally to this work;
(6) Sanghyun Woo, New York University, and contributed equally to this work.
Editor's Note: This is Part 13 of 14 of a study introducing a method for improving how light and shadows can be applied to human portraits in digital images. Read the rest below.
Table of Links
- Abstract and 1. Introduction
- 2. Related Work
- 3. SwitchLight and 3.1. Preliminaries
- 3.2. Problem Formulation
- 3.3. Architecture
- 3.4. Objectives
- 4. Multi-Masked Autoencoder Pre-training
- 5. Data
- 6. Experiments
- 7. Conclusion
Appendix
- A. Implementation Details
- B. User Study Interface
- C. Video Demonstration
- D. Additional Qualitative Results & References
C. Video Demonstration
We present a detailed video demonstration of our SwitchLight framework. Initially, we use real-world videos from Pexels [1] to showcase its robust generalizability and practicality. Then, for state-of-the-art comparisons, we utilize the FFHQ dataset [25] to demonstrate its advanced relighting capabilities over previous methods. The presentation includes several key components:
-
De-rendering: This stage demonstrates the extraction of normal, albedo, roughness, and reflectivity attributes from any given image, a process known as inverse rendering.
-
Neural Relighting: Leveraging these intrinsic properties, our system adeptly relights images to align with a new, specified target lighting environment.
-
Real-time Physically Based Rendering (PBR): Utilizing the Three.js framework and integrating derived intrinsic properties with the Cook-Torrance reflectance model, we facilitate real-time rendering. This enables achieving 30 fps on a MacBook Pro with an Apple M1 chip (8-core CPU and 8-core GPU) and 16 GB of RAM.
-
Copy Light: Leveraging SwitchLight’s ability to predict lighting conditions of a given input image, we explore an intriguing application. This process involves two images, a source and a reference. We first extract their intrinsic surface attributes and lighting conditions. Then, by combining the source intrinsic attributes with the reference lighting condition, we generate a new, relit image. In this image, the source foreground remains unchanged, but its lighting is altered to match that of the reference image.
-
State-of-the-Art Comparisons: We benchmark our framework against leading methods, specifically Total Relight [34] and Lumos [52], to highlight substantial performance improvements over these approaches.
This paper is available on arxiv under CC BY-NC-SA 4.0 DEED license.